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Abstract

The growing applications of low Reynolds number (LRN) operating vehicles impose the need for accurate LRN flow

solutions. These applications usually involve complex unsteady phenomena, which depend on the kinematics of the

vehicle such as pitching, plunging, and flapping of a wing. The objective of the present study is to address the issues

related to LRN aerodynamics of a harmonically pitching NACA0012 airfoil. To this end, the influence of unsteady

parameters, namely, amplitude of oscillation, d, reduced frequency, k, and Reynolds number, Re, on the aerodynamic

performance of the model is investigated. Computational fluid dynamics (CFD) is utilized to solve Navier–Stokes (N–S)

equations discretized based on the Finite Volume Method (FVM). The resulting instantaneous lift coefficients are

compared with analytical data from Theodorsen’s method. The simulation results reveal that d, k, and Re are of great

importance in the aerodynamic performance of the system, as they affect the maximum lift coefficients, hysteresis loops,

strength, and number of the generated vortices within the harmonic motion, and the extent of the so-called figure-of-

eight phenomenon region. Thus, achieving the optimum lift coefficients demands a careful selection of these

parameters.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The emergence of micro-aerial and underwater vehicles has been the major reason for the surge in the recent research

endeavours in the LRN fluid dynamics discipline. The successful design and modelling of these applications are quite

demanding in terms of accurate flow field solutions, and strongly depend on the knowledge of flow patterns and

structures. LRN flows are inherently complex, vastly unsteady, and mostly viscous. The occurrence of the respective

viscous phenomena depends on numerous factors such as kinematics and the operating Re. Therefore, appropriate

solution methods are necessary to obtain reasonably accurate results.

The underlying LRN lift generation mechanisms and the corresponding fluid phenomena: unsteady wing movements,

dynamic stall, rotational effects, wake capturing, vortex interaction, and LE/TE vortices are well addressed in the

studies of Dickinson and Götz (1993), Dickinson et al. (1999), McCroskey (1982), McCroskey and Pucci (1982), Sun

and Tang (2002) and Weis-Fogh (1973). However, the details of the flow structures, influential flow and system
e front matter & 2010 Elsevier Ltd. All rights reserved.
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Nomenclature

b half of the airfoil chord length (b=c/2)

c airfoil chord length

Cd drag coefficient

Cd,max maximum drag coefficient

Cd,min minimum drag coefficient

Cl lift coefficient

Cl,max maximum lift coefficient

d amplitude of oscillation

f frequency of oscillation

k reduced frequency (k=pfc/UN)

LE airfoil leading edge

p static pressure

Re Reynolds number (UNc/n)
T period of oscillation

t physical time

TE airfoil trailing edge

UN freestream velocity

ui component of velocity in i direction (i=1

and 2)

x/c pitching axis location

a instantaneous angle of attack

a0 mean angle of attack

n kinematic viscosity

r fluid density

t nondimensional time (t/T)
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parameters on the aerodynamics, and the effectiveness of each phenomenon at different conditions are not thoroughly

understood. Hence, further investigations are required to obtain a better insight into these types of flows. Two-

dimensional (2-D) LRN unsteady studies are extremely useful in understanding the flow characteristics and can assist in

evaluating the dependence of the aerodynamic performance on different parameters such as the amplitude of

oscillation, reduced frequency, Re, and kinematic patterns. These investigations are also of great importance in

revealing the effectiveness of the 3-D aspects, such as tip vortices, spanwise flow, and vortex interactions. 2-D dynamic

pitching oscillation is one of the prevalent unsteady conditions in LRN flows for which each of the above-mentioned

phenomena could occur and affect the flow field noticeably.

Several researchers have investigated LRN flows by utilizing analytical, experimental or numerical approaches. The

application of analytical techniques is restricted to special cases of extremely simplified flow conditions such as quasi-

steady solution or Theodorsen’s method for 2-D harmonic pitching and plunging oscillations [e.g., see Leishman

(2006)]. Unfortunately, fewer studies are conducted on LRN pitching motions than those at intermediate and high Re,

both experimentally and numerically. Experimental means yield the most reliable results, but these methods are highly

expensive and time consuming. Jung and Park (2005) experimentally showed the strong dependence of a pitching airfoil

vortex shedding on the reduced frequency, k. The experiments by Fuchiwaki and Tanaka (2006) on a pitching airfoil at

Re=4000 showed the dependence of the shed vortices and their scales on k; however, they showed that these vortical

structures are independent of the airfoil configuration and mean angle of attack, a0. The influence of k on the dynamic

lift coefficients is investigated in another study by Fuchiwaki et al. (1999). Koochesfahani (1989) conducted a series of

LRN experiments and showed the strong dependence of the resulting wake structures and thrust coefficients of a

pitching airfoil on frequency and amplitude of oscillation. In a similar study, the vortex–vortex interactions and their

influence on the aerodynamic forces were explored by Shih et al. (1995).

Akbari and Price (2003) simulated the LRN flow field around a pitching airfoil utilizing N–S equations. They

examined the effects of Re, k, a0, and x/c on the predicted aerodynamic forces and concluded that k and Re have

the maximum and minimum effects, respectively, amongst the investigated parameters. Jameson (1991) showed

the importance of amplitude of oscillation and viscous terms by solving Euler equations. Yang et al. (2006) examined

the impact of a0 on fluid flow by simulating the compressible Euler equation based on FVM. Okong’o and Knight

(1997) simulated 2-D, laminar, compressible flow using N–S equations with FVM for Re=104 and 2� 104. They

concluded that the main influence of increasing Re is to reduce the angle of attack at which the primary recirculation

region starts to develop on the leeward side of the airfoil. They also showed that increasing Re causes the location of

these recirculation regions to become closer to the LE of the model. Hamdani and Sun (2000) solved 2-D compressible

N–S equations for the flow field of pitching and plunging motions at Re=100 and obtained large unsteady forces,

attributed to extensive generated vortical patterns. Chandar and Damodaran (2008) numerically solved 2-D airfoil flow

using moving overlapping grids for Re=104 and 4.5� 104 and assumed laminar flow, which led to good agreement

with experimental results. Young and Lai (2004) and Amiralaei et al. (2009) investigated the effects of frequency and

amplitude of oscillations on the 2-D flow field of an airfoil, where Young and Lai (2004) showed that thrust coefficients

are dependent on the product ka rather than k or a individually. Visbal and Shang (1989) conducted a 2-D numerical

study over a pitching airfoil and concluded that the forces and induced vortical structures depend on pitch rate and

pitching axis location (x/c). They also showed that the highly unsteady flow structures are accompanied by reverse flow
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in the boundary layer, shedding of TE vortex into downstream, and formation of LE vortex with a shear layer on the

leeward section of the airfoil.

The present study is geared towards gaining a better understanding of the effect of some unsteady parameters on the

instantaneous lift and drag coefficients of a NACA0012 airfoil under harmonic pitching oscillations. These parameters

are d, k, and Re and the study is conducted for the Re range of 555rRer5000. CFD is the solution approach and 2-D

N–S equations discretized based on FVM are the governing equations. The flow is assumed to be incompressible and

laminar, and the simulation is performed in OpenFOAM (e.g. see the OpenFOAM user guide cited herein, 2008).
2. Theory and numerical simulations

2.1. Governing equations and flow solver

The governing equations for the laminar incompressible flow of a harmonically pitching NACA0012 airfoil are the

2-D N–S equations, which can be expressed in their indicial form as the following:

@ui

@xi

¼ 0; ð1Þ

@ui

@t
þ
@uiuj

@xj

¼�
@p

@xi

þ
1

Re

@2ui

@xj@xj

; ð2Þ

where i=1 and 2 represent the x and y coordinate, respectively, and ui is the velocity in i direction.

These equations are discretized based on FVM in OpenFOAM (OpenFOAM user guide, 2008) and the desired

pitching motion is implemented. Diffusive terms are considered due to their importance in LRN flows. The flow is

assumed to be laminar and incompressible. The governing equations, which consist of continuity and momentum, are

solved in a fixed reference frame, and Laplace smoothing mesh motion algorithm is used to handle the mesh motion.

In the present analysis, convective and diffusive terms are discretized based on a second order central differencing

scheme, and the first order Euler implicit scheme is used for the transient terms. The resulting linear system of equations

is treated with a preconditioned conjugate gradient (PCG) solver and the pressure–velocity coupling was obtained using

a pressure implicit and splitting of operators (PISO) algorithm.

2.2. Mesh generation and boundary conditions

An O-type mesh is generated to model the airfoil and the surrounding flow. The selection of the O-type mesh over a

C-type is based on an earlier study by Yang et al. (2006). They proved that the former mesh is computationally less

expensive, but yields almost the same aerodynamic forces as those resulting from the latter. The schematic of the O-type

grid used for the present simulations is shown in Fig. 1.
Fig. 1. Schematic of the O-type grid around the airfoil.
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Fig. 2. Schematic of computational domain and the boundary conditions.
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The continuity equation demands initial conditions on p, while momentum equations need the initial velocity

components on u and v. The steady state solutions are used as the initial conditions for the time marching calculations.

Along the airfoil surface a no-slip boundary condition is applied. The far-field boundary is set to 30c from the airfoil

such that its effect on the flow surrounding the moving surface is negligible (see Lentink and Gerritsma, 2003; Boss

et al., 2008) and is set to a slip boundary condition, as illustrated in Fig. 2. At the inflow boundary, the velocity is

specified (velocity Dirichlet boundary condition) based on the desired Re, and the pressure is restricted to the zero-

gradient condition. At the outflow boundary, the pressure is set to the freestream value, while the velocity is set to the

zero-gradient condition. The present simulations are conducted for a mesh size of 26� 103 and temporal resolution of

2000 time steps within one oscillation cycle.
2.3. Validation studies

In order to assess the accuracy of the results, extensive examinations are performed to address the issues concerning

grid sensitivity and time step resolution. Also, several simulations are conducted and the results are compared with the

existing database in the literature (Henderson, 1995; Williamson, 1995; Bos et al., 2008; Guilmineau and Queutey, 2002;

Mahfouz and Badr, 2000; Okajima et al., 1975; Akbari and Price, 2003). The lift coefficients are also compared with

those obtained from Theodorsen’s method. This is done to show that Theodorsen’s method only yields reasonable

results when the effect of viscosity is minimal, and to show that the numerical simulations greatly differ from

Theodorsen’s results qualitatively as well as quantitatively, when significant viscosity and vortical structures exist.

Since the quality of the simulation results depends on the mesh and temporal resolution, a convergence study is first

carried out to find the appropriate mesh size and time step for the present study. The pitching motion equation for the

mesh dependence analysis is a=a0þd sin(2pft). This grid analysis is performed for several cases; however, only the

results for d=21, Re=555 and d=101, Re=5000 are presented here for the sake of brevity. Four different mesh sizes

were considered: 5� 103, 11� 103, 26� 103, and 50� 103, corresponding to 100, 140, 176, and 200 points on the airfoil

surface, respectively, and each simulation emerged from its fully converged stationary solution. The lift coefficients

versus time were obtained for each case, and since they are small, the close view of their peak values is depicted in

Fig. 3(a) and (b). The difference between the computed Cl with 26� 103-cells and with 50� 103-cells was found to be

negligible. Thus, the mesh of 26� 103-cells was selected as the baseline mesh for further analyses.

Similar observations are also made for the temporal resolution analysis. The baseline grid (26� 103) was examined

for several time steps: 500, 1000, 2000, and 4000, within one excitation period. As expected (see Ferziger and Peric,

1999) the results are less sensitive to the temporal resolution than the spatial refinement. The lift coefficients for 2000



Table 1

Influence of different mesh sizes and temporal resolution, difference is calculated based on the baseline case (26� 103 cells and 2000

time steps).

T/Dt Grid size� 103 Difference (%)

500 26 1.47

1000 26 1.0

4000 26 0.2

2000 5 2.6

2000 11 1.2

2000 50 0.4

Fig. 3. Peak lift coefficients versus nondimensional time for different mesh sizes (k=0.1, x/c=0.25): þ, 5� 103; B, 11� 103; &,

26� 103; � , 50� 103, (a) d=21 and Re=555; (b) d=101 and Re=5000.
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and 4000 time steps had negligible differences (Table 1). Therefore, we conclude that with the present solver settings,

26� 103 cells and 2000 time steps are sufficient and yield accurate results for the dynamic pitching simulations.

The simulations are further validated against the existing literature. First, the fluid flow of a stationary cylinder with

Re=150 is simulated, which refers to a fully laminar flow (Henderson, 1995; Williamson, 1995; Bos et al., 2008). The

calculated mean drag coefficient of the present simulation (Cd=1.375) is in close agreement with that of Henderson

(1995). Fig. 4 shows the computed drag coefficient.

Secondly, the vertical oscillation (plunging motion) of a cylinder at Re=185 is simulated. This case has been

investigated by Bos et al. (2008) and Guilmineau and Queutey (2002). The motion is governed by y(t)=�Ae sin(2pfet),

where Ae=0.2c and fe=0.154. The calculated mean drag coefficient is Cd =1.25, which matches the result of Bos et al.

(2008), where Cd =1.25. The obtained Cd is also in close agreement with that of Guilmineau and Queutey (2002), where

Cd =1.2. Fig. 5 shows the simulated drag coefficient, and the generated von Karman vortex in the downstream wake of

the plunging cylinder in presented in Fig. 6.

The flow field of a pitching circular cylinder is also simulated following the studies by Mahfouz and Badr (2000) and

Okajima et al. (1975). The nondimensional surface velocity of the cylinder is given by Uw=0.2 sin(0.1pt), and Re=40.

The calculated Cl is in good agreement with that of Mahfouz and Badr (2000) and Okajima et al. (1975), as shown

in Fig. 7.

Moreover, the pitching oscillation of a NACA0012 airfoil studied by Akbari and Price (2003) is investigated. The

pitching oscillation is governed by a=151þ101 cos(2pft), and k=0.25 (k=pfc/UN) and Re=3000. Fig. 8 shows the

normal force coefficient (Cn) versus a, which is in close agreement with that of Akbari and Price (2003). The observed

discrepancy could be related to the different LE/TE geometries considered for the NACA0012 models, or it could be

due to the different utilized time and grid resolutions.

Finally, the lift coefficients obtained from this numerical study are compared with those calculated from

Theodorsen’s method. The details of Theodorsen’s method are well documented [e.g., see Leishman (2006) and the



Fig. 5. Lift and drag coefficient of a plunging cylinder at Re=185 (y(t)=�Ae sin(2pfet), where Ae=0.2c and fe=0.154).

Fig. 6. Von Karman vortex street behind a plunging cylinder at Re=185 where Ae=0.2c and fe=0.154.

Fig. 4. Drag coefficient of a stationary cylinder at Re=150.
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references cited therein]; however, for the sake of completeness, a brief explanation is given here. Theodorsen’s method

for pitching airfoils is based on inviscid, incompressible, and small disturbance assumptions and yields the aerodynamic

lift by the following equation:

L¼ prV2b
b

V
_a�

b2

V2
a €a

� �
þ 2prV 2b aþ

b _a
V

1

2
�a
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CðkÞ; ð3Þ



Fig. 7. Lift coefficient of a pitching cylinder at Re=40, Uw=0.2 sin(0.1pt): þ, Mahfouz and Badr (2000); � , Okajima et al. (1975);

n, present simulation.

Fig. 8. Normal force coefficient (Cn) of a pitching NACA0012 at Re=3000 (a=151þ101 cos(2pft), k=.25, where k=pfc/UN): -,

present simulation; o, Akbari and Price (2003).
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where r, b, V, a, a, and C(k) are, respectively, the density, airfoil half-chord length, flow velocity, instantaneous angle of

attack, pitching axis location, and Theodorsen’s function. For pure pitching oscillations (a=a eiot) the lift coefficient

(Cl) is obtained by the following equation:

Cl ¼ 2pðF 1þ ik½ � þ G i�k½ �Þaeiot þ pk i�
k

2

� �
aeiot; ð4Þ

where k is the reduced frequency, and F and G are the real and imaginary parts of Theodorsen’s function

(C(k)=F(k)þiG(k)), respectively.

In the present study, the pitching motion is governed by the following equation:

a¼ a0 þ d sinð2pftÞ ð5Þ

The simulation is conducted for both viscous and inviscid flow where Re=555, k=0.1, and d=21. According to

Leishman (2006), Theodorsen’s method gives accurate results for small amplitudes of oscillation and reduced

frequencies. Fig. 9 shows that our inviscid simulation matches the results of Theodorsen’s method; however, for viscous

flow, the numerically computed lift coefficients are slightly lower than those calculated from Theodorsen’s method

(Fig. 9).



Fig. 10. Lift coefficient versus nondimensional time (Re=555, k=0.1, d=101): o, numerical; , Theodorsen (airfoil pitch angle is

also shown on the figure: ––, a/2).

Fig. 9. Lift coefficient versus nondimensional time (Re=555, k=0.1, d=21): –, viscous N–S simulation; � , inviscid

N–S simulation; n, Theodorsen.
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Fig. 10 shows the lift coefficients versus nondimensional time for the aforementioned parameters. In this figure, the

lift coefficient computed by the numerical solution of the viscous N–S equations is compared with that calculated via

Theodorsen’s method. Fig. 10 shows that the difference between the analytical and numerical results is increased for

d=101, which can be related to the breakdown of Kutta condition (see Leishman, 2006) and the stronger effects of

vortices around TE, which cause inaccuracies in the predictions of the analytical method.
3. Results and discussion

The present parametric study is carried out to investigate the influence of d, k, and Re on the aerodynamics of a

NACA0012 where x/c=0.25. A summary of the case-studies is shown in Fig. 11. The emphasis in this work is put on

the influence of the abovementioned parameters on the generated lift and drag coefficients, and wherever necessary the

vortical patterns around the model are discussed in detail.
3.1. Effects of amplitude of oscillation

The effect of the airfoil amplitude of oscillations on the simulated lift coefficients is first explored. The instantaneous

Cl versus t is depicted in Fig. 12 for d=21, 41, 61, 81, and 101, where k=0.1 and Re=555. As illustrated, the maximum



Fig. 12. Lift coefficient versus nondimensional time: -, d=21; þ, d=41; B, d=61; &, d=81; � , d=101.

Fig. 13. The generated vortical structures after the peak Cl, d=101, k=0.1, Re=555: (a) a=�9.751; (b) a=�7.8o; (c) a=�5.61.

sin(2πft)0 dαα +=U∞

d = 2°, 4°, 6°, 8°, and 10°
k = 0.1 
Re = 555

d = 4°, 6°, and 10°
k = 0.1, 0.125, 0.17, and 0.25 

Re = 555

d = 2° and 10°
k = 0.1 

Re = 555, 1000, 2000, and 5000

Parametric study over d Parametric study over k revoydutscirtemaraP Re

Aerodynamic force calculation (cl , cd)

Fig. 11. Schematic view of the conducted case-studies.
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lift coefficient (Cl,max) increases at higher amplitudes of oscillations. The calculated lift coefficients are periodic and

harmonic; however, for d=81 there is a deviation from sinusoidal behaviour after the peak lift coefficient. This

deviation is more noticeable in the d=101 case, which can be explained by the generation of three consecutive vortices

at the TE of the airfoil. These counter-rotating vortical structures are shown in Fig. 13. Furthermore, increasing d

induces significant lead in the Cl results meaning that Cl,max is obtained at a lower t (Fig. 12). This can be attributed to

the stronger effects of shed wake and vortical structures on the surrounding fluid at higher amplitudes.



Fig. 14. Lift coefficient versus angle of attack (k=0.1, Re=555): -, d=21; þ, d=41; B, d=61; &, d=81; � , d=101.

Fig. 15. Drag coefficient versus angle of attack (k=0.1, Re=555): -, d=21; þ, d=41; B, d=61; &, d=81; � , d=101.
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Fig. 14 shows Cl versus a for the conducted simulations. As can be seen, the hysteresis loops are broadened for larger

amplitudes. It means that at larger amplitudes, for the same angle of attack, the airfoil produces higher lift during

downstroke than upstroke. The existence of these loops is the result of the induced velocities, which result in different

lift coefficients between upstroke and downstroke. In addition, despite the influence of d on the maximum lift

coefficient, hysteresis loop width, and lift enhancing vortical structures, it does not have a noticeable effect on the lift

curve slopes (Fig. 14). The predicted drag coefficients versus angle of attack are illustrated in Fig. 15 showing a figure-

of-eight pattern. Likewise the Cl curves (Fig. 14), the maximum value (Cd,max) as well as hysteresis loop width are

increased at higher amplitudes of oscillations. The upstroke Cd is higher than the downstroke one, which is against the

trend seen in Fig. 14. Also, Cd,min is almost constant and does not change with d noticeably.
3.2. Effects of reduced frequency

The effect of reduced frequency on the unsteady pitching motion is investigated by plotting the Cl versus a curves for

several reduced frequencies: k=0.1, 0.125, 0.17, 0.25 at Re=555 and d=41, 61, and 101. As shown in Fig. 16 (d=41),

Cl,max increases with reduced frequency; from Cl,max=0.265 at k=0.1 to Cl,max=0.27 at k=0.125 and from

Cl,max=0.275 at k=0.17 to Cl,max=0.28 at k=0.25. Moreover, a higher k broadens the hysteresis loops, but does not

have any noticeable effect on the lift curve slope. A similar behaviour is observed for d=61 (Fig. 17); however, in this

case, k has a stronger effect on the lift coefficients and a more noticeable effect on Cl,max. That is, increasing k changes



Fig. 17. Lift coefficient versus angle of attack (d=61, Re=555): -, k=0.1; þ, k=0.125; B, k=0.17; � , k=0.25.

Fig. 16. Lift coefficient versus angle of attack (d=41, Re=555): -, k=0.1; þ, k=0.125; B, k=0.17; � , k=0.25.

Fig. 18. Lift coefficient versus angle of attack (d=101, Re=555): -, k=0.1; þ, k=0.125; B, k=0.17; � , k=0.25.
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Cl,max from 0.38 at k=0.1 to Cl,max=0.4 at k=0.125 and from Cl,max=0.41 at k=0.17 to Cl,max=0.43 at k=0.25.

Fig. 18 reveals that increasing k at d=101, where there are consecutive vortical patterns in the Cl curves, has

considerable influence on the strength of these vortices and their initiation location during the harmonic motion.



Fig. 19. Drag coefficient versus angle of attack (d=101, Re=555): -, k=0.1; þ, k=0.125; B, k=0.17; � , k=0.25.

Fig. 20. Lift coefficient versus angle of attack (d=101, k=0.1): -, Re=555; þ, Re=1000; B, Re=2000; � , Re=5000.
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As described in the previous section, three consecutive vortices are generated at TE after the peak value of lift for

k=0.1 and d=101. These vortices amplify the lift force from the instant they are generated to the instant of their

separation and shedding into the downstream wake. As k is increased to 0.125, the pitch angle at which these vortices

form is changed from a=101 at k=0.1 to a=9.51 at k=0.125. The effect of these two vortices is observed at k=0.125

(Fig. 18) in the lift coefficient curves, the second one occurring at a=71. At k=0.17, the first vortex starts to develop

and sheds at aE81. Moreover, as shown in Fig. 18, the number of effective vortices in the lift generation is reduced from

three at k=0.1 to two at k=0.125 and to one at k=0.17. The pitch angle of the first vortical structure is further

changed to aE41 for k=0.25, and this vortex is the only effective one in the simulated lift coefficients.

Fig. 19 shows the respective Cd versus a curve of Fig. 18. As shown, increasing the reduced frequency increases Cd,max

and broadens the hysteresis loop width. The effect of k during the downstroke is greater than during the upstroke. The

minimum drag coefficient remains constant for k=0.1, 0.125, and 0.17; however, it is reduced for k=0.25, where the

number of the vortical structures is reduced to one and occurs at aE41.
3.3. Effects of Reynolds number

The influence of Re on the simulated lift coefficients is studied for Re=555, 1000, 2000, and 5000. This investigation

is conducted for k=0.1 and d=21 and 101, which are the lowest and highest considered amplitudes of oscillation in this

study. As Re is increased from Re=555 to 1000 for d=101, the maximum lift coefficient increases from Cl,max=0.61

to 0.67 (see Fig. 20); however, the pitch angle at which Cl,max occurs remains the same, aE91 for both Re. The increase
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in Cl,max at Re=1000 is accompanied by a figure-of-eight-phenomenon at aE9.51. After this point, the upstroke lift

coefficients are higher than those at the downstroke at the same angle of attack. Both Re=555 and 1000 include three

sudden rise-and-falls after the peak lift coefficients. This behaviour can be attributed to the generation of extensive

vortical patterns after the maximum angle of attack. Further increase in Re, Re=2000, results in decrease in Cl,max and

decrease in the figure-of-eight phenomenon region. However, further increase of Re to 5000 slightly increases Cl,max and

eliminates the figure-of-eight phenomenon. Fig. 21(a)–(d) show the vortical patterns around the airfoil when Cl,max is

achieved. As can be seen, increasing Re from 555 to 1000 slightly increases the size of the TE vortex and the strength of

the lower surface vortex. Further increase of Re from 1000 to 2000 causes the lower surface vortex to separate, which
Fig. 22. Lift coefficient versus angle of attack (d=21, k=0.1): -, Re=555; þ, Re=1000; B, Re=2000; � , Re=5000.

Fig. 21. Vortical patterns around the airfoil when Cl,max is obtained (d=101, k=0.1).

Fig. 23. Drag coefficient versus angle of attack (d=101, k=0.1): -, Re=555; þ, Re=1000; B, Re=2000; � , Re=5000.
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could be the reason for the decrease of Cl,max previously observed in Fig. 20. The lower and upper surface vortices are

not separated from the airfoil at Re=5000, but the TE vortex is separated and convected into the downstream wake.

This could be the reason for higher Cl,max at Re=5000 than that Re=2000, and the reason for lower Cl,max than those

at Re=555 and 1000. The effect of increasing Re is also investigated at the lowest explored amplitude of oscillations,

d=21, and the same trends as those effects of Re at d=101 are observed (see Fig. 22). Fig. 23 shows the Cd versus a
curves at d=101 for different Reynolds numbers. As can be seen, Cd,min is reduced by increasing Re from 555 to 2000,

but increases for Re=5000.
4. Conclusion

A numerical aerodynamics study was carried out for a 2-D flow around a NACA0012 airfoil performing dynamic

pitching motion in LRN regime. The aerodynamic characteristics of the model were explored and the effect of some

unsteady flow and system parameters (d, k, and Re) on the instantaneous force coefficients and flow patterns were

investigated. The analysis was conducted by means of Navier–Stokes equations discretized based on a finite volume

approach. The results show the substantial influence of the aforementioned unsteady parameters on the maximum lift

and drag coefficients. The parameters increase or decrease the aerodynamic force peak values depending on the

surrounding flow structure. Hysteresis loops are also broadened or narrowed due to similar reasons. d and k do not

have a noticeable effect on the lift curve slopes. It is also observed that d, k and Re are effective in changing the number,

strength, and even the development angle of the generated vortical patterns. Moreover, a pattern called ‘‘figure-of-eight

phenomenon’’ is observed in the predicted force coefficients at Re=2000, which is eliminated at Re=5000. Similar

effects are noticed in the drag coefficient results, but the minimum drag coefficient is not affected substantially by the

investigated parameters except at the high amplitudes of oscillation and high Reynolds numbers.
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